文本描述
地埋管热泵技术因其显著的节能和环保优势,越来越受到人们的关注,其 有效结合了热泵系统、地埋管换热系统和采暖空调系统,冬季从土壤中吸收热 量同时蓄存冷量以备夏用,夏季向土壤中释放热量同时蓄存热量以备冬用,其 他季节土壤自然恢复,实现了能量的移季利用,是二十一世纪解决能源危机, 实现可持续发展战略的绿色空调系统。 本文在国家建设节能型农村政策的影响下,提出了一种适用于广阔地域的 具有新型埋管型式的系统——单排地埋管热泵系统。与常见的单管型式相比, 它具有较大的容量,能够承担较大的建筑负荷;与管群相比,它的地下土壤温 度场具有较好的恢复性能。为了研究该系统在严寒地区的可行性,本文采用 FLUENT 数值模拟软件对该系统进行了长期的仿真模拟。首先选取哈尔滨地区 的某一独立住宅建筑,建立系统各部分的数学模型,包括供暖房间、热泵机 组、风机盘管、地埋管换热器及周围土壤的数学模型和相应的定解条件。根据 仿真数据和模拟图表,对系统运行一年和多年的土壤温度场变化规律进行研 究,分析土壤的热平衡特性和系统的运行特性。为了研究系统的取热蓄热特性 和土壤温度场的变化,分别从埋管的总取热量、单位埋深的取热量、热泵 COP 等方面进行了理论分析。 最后,针对理论分析结果,做出单排地埋管热泵系统在严寒地区的可行性 判定,提出相应的改进措施。同时选取北京和武汉两个代表性的城市,根据气 候和地质条件的不同对系统进行类比模拟分析,进而指出单排地埋管热泵系统 的适用地区,为单排地埋管热泵技术的推广和应用提供理论指导。 单排地埋管热泵系统在严寒地区应用时由于冬夏季负荷不平衡,土壤热源 平均温度逐渐下降,热泵和系统的性能降低,对系统长期运行工况不利。然而 如果采取相应的热量补偿措施,从系统初投资和运行费用方面考虑单排地埋管 热泵系统节能效果显著,发展前景广阔。 关键词,能量移季利用;单排地埋管热泵系统;仿真模拟;热平衡分析和可 行性判断哈尔滨工业大学工学硕士学位报告 - II - Abstract Ground-coupled heat pump technology has been gaining increasing popularity in residential and commercial buildings, since it is environment-friendly, causing less energy than their conventional alternatives. The ground source heat pump system effectively combines heat pump system with heating and air-conditioning system, besides it utilizes the earth as heat source. When it runs, the heat exchangers extract or inject thermal energy from or into the ground so that it realizes the seasonal energy diversion. The ground source heat pump system is one of green air- conditioning systems in the 21th century. With the national policy of building new energy-efficient village, the ground source heat pump with new pipe columns called single-row ground source heat pump has been put forward in this paper. Compared to single-tube ground source heat pump, it has a greater capacity to undertake larger heat or cold loads. It is appropriate to apply in vast area, and the soil temperature field has a better recovery performance, which is superior to tube group type. The certain building mentioned in the article was selected in Harbin suburb in order to validate the feasibility of this type of system in severe cold area. Long-term numerical simulation of this system was carried out by FLUENT software. We established the mathematical model of each subsystem, containing the physical and mathematical model of heat exchanger, heat pump units, target room and fan coil system, single-value conditions as well. According to the first year’s and years’ simulation results of this system, we got the thermal equilibrium analysis of soil field by theoretical analysis of total and unit heat extraction capacity, COP of heat pump, etc. Then we made the judgment of the feasibility of single-row ground source heat pump system applied in cold area, and then the relevant improvement measures were presented. On the other hand, analogy simulations were performed in typical cities of Beijing and Wuhan and the relevant operation parameters were made according to the different climate and geological conditions. In the end, the applicable area of single-row ground source heat pump came out. All of our research results would provide theoretical guidance for applying and popularizing the technology of this heat pump system. Because of the imbalance between heat and cooling load in severe cold area, the average soil temperature gradually decreases and the performance of heat pump units and the whole system also become lower as time goes, all of which is unfavorable for the system’s long-term use. While if appropriate measures to compensate for the heat imbalance were took, from initial investment and operational costs, the single-row ground source heat pump system would have哈尔滨工业大学工学硕士学位报告 - III - significant friendly environmental effects and bright development prospects. Keywords,the seasonal energy diversion,single-row ground source heat pump system , simulation , thermal equilibrium analysis and feasibility judgment哈尔滨工业大学工学硕士学位报告 - IV - 目录 摘要 .........................................................................................................................I Abstract...................................................................................................................II 第 1 章 绪论 .......................................................................................................... 1 1.1 课题来源及研究的目的和意义 ................................................................. 1 1.1.1 课题背景 .............................................................................................. 1 1.1.2 研究目的及意义 .................................................................................. 3 1.2 课题研究现状 ............................................................................................. 4 1.2.1 地源热泵的研究现状 .......................................................................... 4 1.2.2 仿真技术的应用 .................................................................................. 8 1.3 课题的主要研究内容 ................................................................................. 9 第 2 章 单排地埋管热泵系统的模型设计 .........................................................11 2.1 土壤热源的理论 ........................................................................................11 2.2 模拟对象介绍 ........................................................................................... 13 2.3 地埋管热泵换热系统 ............................................................................... 14 2.3.1 系统概述 ............................................................................................ 14 2.3.2 设备选型 ............................................................................................ 16 2.4 本章小结 ................................................................................................... 16 第 3 章 单排地埋管热泵系统的仿真模拟 ........................................................ 17 3.1 U 型埋管换热器的物理模型 .................................................................... 17 3.1.1 模拟工况简介 .................................................................................... 17 3.1.2 地埋管换热器的传热理论与模型假设 ............................................ 17 3.2 U 型埋管换热器的数学模型 .................................................................... 19 3.2.1 U 型管内流体流动的数学描述 ......................................................... 19 3.2.2 U 型管内近壁区流动处理 ................................................................. 21 3.2.3 U 型管及土壤导热的数学描述 ......................................................... 22 3.3 热泵系统其他部分的数学模型 ............................................................... 25 3.3.1 供暖房间的数学模型 ........................................................................ 25 3.3.2 热泵机组的数学模型 ........................................................................ 26 3.3.3 风机盘管的数学模型 ........................................................................ 27 3.4 模拟系统的原理和运行模式 ................................................................... 29 3.4.1 系统的运行原理 ................................................................................ 29 3.4.2